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 In the midst of the Internet of Things, where interconnected devices have exponentially grown, 

cybersecurity has gained particular relevance in the modern society. Risk assessments a key 

concept in cybersecurity. Therefore, this work aims to provide a dynamic measure of uncertainty 

within a network, leading to optimization of decision-making when facing risky scenarios. 

1. Introduction 

The exponential increase in Internet connected devices has make cybersecurity a matter of 

concern [1]. In fact, cybersecurity breaches do not only affect in terms of information leak, 

but in economical, reputational, psychological, and societal terms too [2]. To cover the needs 

that cybersecurity problems require, several solutions have been proposed. In recent years, 

where the Artificial Intelligence has provoked a change of paradigm. In the past, a variety of 

conventional methods were employed to detect, and counter cyberattacks, yet these 

approaches proved inadequate against emerging threats. Presently, Machine Learning (ML) 

techniques have gained prominence across various domains (including cybersecurity), 

offering enhanced computational efficiency and rapid processing network data. Several ML 

based cybersecurity solutions have been proposed, as the literature [3] shows, where several 

ML based techniques are shown, facing different cybersecurity intrusion detection 

problems. A critical aspect of cybersecurity lies on the associated, informed risk assessment, 

focusing on quantifying the effects of a certain threat and the potential losses (financial, 

societal, environmental) related to the threat. For example, [4] provides an overview of risk 

assessment for Supervisory Control and Data Acquisition (SCADA) and Distributed Control 

Systems (DCSs). 

2. The Current State of Affairs in Network Risk 

Assessment 

Network risk assessment involves evaluating potential risks and vulnerabilities within a 

network environment. It typically includes asset identification, threat identification, 

vulnerability assessment, risk analysis, risk prioritization, mitigation strategies and 

monitoring and review. Overall, network risk assessment helps organizations identify and 

understand potential risks to their network infrastructure, enabling them to take proactive 

measures to mitigate these risks and enhance their overall cybersecurity posture.  

Even the ML paradigm has found its place in risk assessment. For example, the work 

presented in [5], provides a fuzzy probability Bayesian network approach for Dynamic 

Cybersecurity Risk Assessment for Industrial Control Systems (ICS). In [6], the authors 

present an object typing, data mining and quantitative risk assessment approach for Smart 
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Cities. For that, they provide a Neural Network (NN) based solution, where the NN outputs 

a risk measure, given a device within the Smart City and certain characteristics of it. In 

general, state of the art works focused on risk assessment try to provide a measurable way 

of indicating a risk in a certain system. Entropy, as a measure of uncertainty, fits good with 

the problem characteristics. In [7], the authors provide a weighted entropy method to 

measure risk on cybersecurity systems.  

Commonly, these approaches address risk assessment problems component wise, without a 

wider perspective of the matter. 

3. The Role of Entropy-Based Risk Assessment (EBRA) 

To the best of our knowledge, our work is the first one combining graph entropy measures 

together with machine learning anomaly detection algorithms to provide dynamic network 

topology state knowledge. In this way, our proposal provides a way to predict the uncertainty 

level of each device within a network, depending on the surrounding connections and device 

disposition.  The key points for this are the intrinsic entropy of nodes induced by the 

surroundings within a graph and network traffic analysis. The analysis of network traffic 

provides the information for reconstructing the network topology with more or less accuracy 

(it depends on if the traffic has been gathered from a mirroring port for example, or, instead, 

the traffic is gathered from a machine within a LAN, where the reconstruction would be more 

limited) and characterizing the normal behaviour of device communications. Then the risk 

is measured in two ways. On one hand, entropy scores are computed for each node 

considering the normality state for the network connections (for more abnormal 

connections, more uncertainty in the network, and, thus, more risk). On the other hand, the 

other measure considered is the location of a node within a network (the more reachable a 

node is starting from any other node, the more uncertainty it causes, and, again, more risk). 

This technology fits particularly good in Software Defined Networks (SDR) where network 

topologies may be frequently changed. 

4. The Research and Development Path in ATLANTIS 

The work proposes a network traffic analyser that constructs a graph from the network 

traffic flows which represents the network topology.  Once the graph is done, it computes 

the intrinsic entropy for each node within the graph. For this, several steps are followed. 

First, the graph is completed and weighted following reachability criteria. In other words, 

the weight for each edge in the completed graph is determined by minimum path length 

between two nodes in the original graph. In this way, we determine the distance between 

two nodes by a reachability criterion, computed on the number of steps to give. As the 

motivation relies on measuring the uncertainty of a node given its surroundings, we would 

like to measure how a node is affected by other nodes. Then, it could be inferred that the 

greater the distance between one node and another (resulting in more steps needed to 

traverse the path between them), the lesser the impact. Therefore, in a second step, the 

weights are replaced by their inverse. In this way, a probability of a node being affected 

considering all the surrounding nodes might be defined. As we constructed a complete 

graph, all nodes are connected to every other node. Thus, let it be 𝑣 a node in the completed 
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graph 𝐺, and 𝑤𝑢,𝑣 the weight of any edge (𝑣, 𝑢) in the neighbour 𝑁𝐺(𝑣) ⊆ 𝐺 of 𝑣. We may 

define a variable 𝑋𝑣  by all the edges (𝑣, 𝑢) ∈ 𝑁𝐺(𝑣). Then, 𝑃(𝑋𝑣 = (𝑣, 𝑢)) =  
𝑤𝑢,𝑣

∑ 𝑤𝑢,𝑣𝑤𝑢,𝑣

. Now, 

the entropy for each 𝑣, in the graph 𝐺, is defined as 

𝐻(𝑋𝑣) = −∑𝑃(𝑋𝑣 = (𝑢, 𝑣)) log 𝑃 (𝑋𝑣 = (𝑢, 𝑣))  

This entropy measures the uncertainty of a node within a network.  

For example, in the graph in Figure 1, under the defined value, the darkest blue will have the 

biggest (most “centralized” node) entropy, whereas the white one, will have the lowest (most 

“isolated” node). This might be interesting to understand and optimize network topologies. 

However, for static networks, this might not provide more than a first impression of the state 

of a network. To overcome that, anomaly detectors are integrated into the solution, to 

provide information of the connection between nodes. Let 𝑀: 𝑅𝑛 → [0,1] be a model which 

analyses 𝑛 dimensional points gathered from network traffic metrics and outputs an 

anomaly score between 0 and 1. Let 𝑥𝑢.𝑣(𝑡) be an 𝑛 dimensional point collected at time 𝑡 for 

a given (𝑢, 𝑣) connection. Then a temporal dependant weight is defined such as 𝑤𝑢,𝑣(𝑡) =

𝑀(𝑥𝑢.𝑣(𝑡))𝑤𝑢,𝑣. From here,  𝑃(𝑋𝑣 = (𝑣, 𝑢), 𝑡, 𝑀) =  
𝑀(𝑥𝑢.𝑣(𝑡))𝑤𝑢,𝑣

∑ 𝑤𝑢,𝑣𝑤𝑢,𝑣

 and  

𝐻(𝑋𝑣 , 𝑡, 𝑀) = −∑𝑃(𝑋𝑣 = (𝑢, 𝑣), 𝑡, 𝑀) log 𝑃 (𝑋𝑣 = (𝑢, 𝑣), 𝑡, 𝑀).  

Like this, maximum entropy for a node is achieved when surrounding connection’s anomaly 

score is maximum (𝑀(𝑥𝑢.𝑣(𝑡)) = 1) and minimum is achieved in the opposite case 

(𝑀(𝑥𝑢.𝑣(𝑡)) = 0). 

 

Figure 1. Graph example. 

5. The Challenges and Barriers 

As described in Section 2, the methodology exposed is particularly well-suited for SDNs, 

where network topologies may undergo frequent changes. However, this particular method 

might face network reconstruction problems other scenarios. If network topology is 

provided (periodically in scenarios where the network changes frequently), the method 

would not face any barrier. The problem comes when no information is given and the 

accessibility to network traffic is limited (not in a port mirror for example). In this case, some 

heuristics may be applied to reconstruct the network, but probably local network may be the 

only rebuildable network.  

A more general problem, but common, is related to data quality. If network data quality does 

not reflect the normality of the network, then the anomaly detection models will not be able 

to detect anomalies in a proper way. 
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6. The Benefits and Impact 

The technology provides a way of measuring the uncertainty that a node faces given its 

surroundings, leading to an increased perception of the network state. Given this 

information, an operator might be assisted on decision-making, optimizing network 

topologies into more secure ones (entropy minimization) and deciding whether a node 

should be isolated or moved at a certain point in time due to entropy maximizing anomalous 

connections. This is directly related to Dynamic Risk Assessment handling, as the lower the 

entropy (uncertainty), the lower the risk, improving security and safety of device networks.  

7. Future Outlook 

The technology is adaptable to any dynamic environment, as is intended to be so. Some 

updating mechanisms should be integrated to optimize the way the model is updated. 

However, due to graph problems nature, the scalability when facing huge graphs might be 

limited. Again, for facing this kind of problems, some heuristics might be adopted. In 

general, except for the mentioned case, the proposed method adapts to any kind of 

communication network, independently to the underlying network producing use case. 

8. Conclusions 

This work provides the technical insight of an entropy-based risk assessment (EBRA) tool, 

that computes the entropy of a network given its topology and anomaly scores for each 

connection. This provides a measure of risk with which an operator of a network can 

optimize its decision-making. The method is scalable, even if some heuristic approach might 

be adopted in huge network scenarios. 
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